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ABSTRACT 

Precariously balanced rocks (PBRs) and other fragile geologic features are important in both the engineering and seismological 

communities since they are indicative of the maximum ground motion at a site over the rock’s lifetime. Precariously balanced 

rocks are individual or stacks of freestanding rocks that tend to respond in rigid body modes when subject to seismic excitation 

– namely, rocking, sliding, slide-rocking, and free-flight, which can lead to overturning. The seismic response of freestanding 

structures, such as PBRs, is known to be extremely sensitive to small changes in geometry, position, and earthquake excitation. 

As such, deterministic methods are limited in their application to PBRs and reliable probabilistic relationships are necessary. 

Previous probabilistic studies on freestanding structures and PBRs have focused on a single response mode, such as overturning, 

and utilized a single intensity measure, typically the peak ground acceleration. To this end, this paper aims to identify optimal 

ground motion intensity measures (IMs) that correlate well with the multiple possible rigid body modes including rocking and 

sliding. In this study, structural parameters, including geometry and friction, were varied to induce each of the fundamental 

rigid body modes. The response of each structure was simulated to 3750 analytical pulse motions through numerical integration 

of the slide-rocking equations of motion within MATLAB. The results of the simulations were statistically analyzed to 

determine the optimal IMs in terms of both sufficiency and efficiency. A set of viable IMs are presented that have more robust 

probabilistic relationships with the dynamic response of a sliding or rocking block compared to previous IM studies.  
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INTRODUCTION 

Precariously balanced rocks (PBRs) have been identified as potential natural seismoscopes for the past few decades since their 

fragile or precarious configurations limit the intensity of earthquake ground motions experienced at the site [1, 2]. This 

information is incredibly valuable to engineers and seismologists alike because the ground motion at which a PBR overturns is 

indicative of an upper bound for seismic design. PBRs are individual or stacks of boulders that have eroded into highly 

precarious or fragile configurations – see Figure 1a. While PBRs have been documented by seismologists since the early 1800s, 

Brune proposed that the existence of certain PBRs in southern California implied that current seismic hazard was overestimating 

earthquakes with long recurrence intervals [1, 3]. Since then, numerous studies have been conducted to analyze whether there 

is a discrepancy between PBRs and hazard curves produced through probabilistic seismic hazard analysis (PSHA). These 

findings are dependent on location; however, several PBR analyses have indicated that current seismic hazard is overestimated 

at long return periods.  

The critical pieces of information needed to effectively use PBRs as a way to understand rare seismic hazard are the age of the 

rocks and the ground motion that would overturn them. Two frequently used dating methods include rock-varnish 

microlamination and cosmogenic-nuclide exposure dating [4, 5]. The rock-varnish method harnesses the knowledge of the 

elements that would be present in the varnish by geologic time period; and, the oldest geologic time period identified in the 

varnish can be used to estimate the minimum age for the PBR [4]. On the other hand, cosmogenic-nuclide dating estimates the 

maximum age of the PBR by measuring the presence of cosmogenic nuclides on the surface of the PBR, which are a function 

of exposure to the sun’s rays [5]. Although these methods are not able to provide a precise age of an individual PBR, they 

provide an approximate range of how long a PBR has been in a fragile (exhumed) state. Bell et al. utilized both rock-varnish 

and cosmogenic dating for PBRs in California and Nevada and found the granitic rocks to range from 10,500 to 27,000 years 

old [4]. In addition to the approximate age of the PBR, knowledge of the motion required to overturn the PBR is necessary. 

The seismic response of PBRs is akin to that of freestanding structures, since the PBRs have eroded into unattached boulders. 

To this end, several studies have utilized the theoretical equations of motion for a two-dimensional rocking response to analyze 

PBRs [6-9]. However, as a freestanding structure, PBRs will respond in a combination of rigid body modes – namely, rocking, 

sliding, slide-rocking, or free-flight. Relatively few studies have been conducted that account for the multi-modal behavior of 
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PBRs [e.g., 2]. While this multi-modal behavior more accurately reflects the behavior of a freestanding structure to a given 

earthquake, the extension to probabilistic relationships is difficult given the potential for the individual modes to correlate with 

different measures of earthquake intensity.   

This paper aims to identify optimal intensity measures for freestanding structures considering both rocking and sliding modes. 

To this end, the equations of motion for the individual response modes are derived and presented in the first section. Analytical 

pulse motions to be used as input excitations are discussed in the second section of this paper. Ultimately, an intensity measure 

study is presented in which the response of freestanding structures is correlated to various potential measures of earthquake 

intensity.  

  
(a)  (b) 

Figure 1. (a) Sample PBR in Jacumba, CA. (b) General sign convention for 2D rigid block. 

EQUATIONS OF MOTION 

Background  

A precariously balanced rock (PBR) can be treated as a freestanding structure, characterized by an unanchored or unattached 

base and predominantly rigid behavior. These structures respond to earthquakes in some combination of rigid body modes, 

including rocking, sliding, and slide-rocking. While PBRs are complex, three-dimensional structures, a rectangular two-

dimensional block is analyzed herein. The motivation is to reduce uncertainty and to hone in on the fundamental behavior of 

freestanding structures. A schematic of the general two-dimensional block analyzed is presented in Figure 1b. As shown in this 

diagram, rotation of the rigid body, θ, is considered positive in the clockwise direction, and horizontal displacement, x, is 

positive to the right. From Figure 1b, the constants of the rocking block problem are as follows: B is the base length, H is the 

height, R is the distance from one bottom corner to the centroid, m is the mass, I is the moment of inertia, 𝜇𝑠 is the coefficient 

of static friction, 𝜇𝑘 is the coefficient of kinetic friction, and α is the critical angle. �̈�𝑔and �̈�𝑔represent the horizontal and vertical 

acceleration components of the input ground motion, respectively. The governing equations of motion for a two-dimensional 

rigid block subject to horizontal base accelerations have been previously derived and presented by others and are summarized 

herein [10 – 12].  

Sliding 

A sliding response is initiated from rest when 

𝜇𝑠(𝑔 + �̈�𝑔) < |�̈�𝑔| (1) 

In this equation, the horizontal and vertical ground accelerations are denoted as �̈�𝑔and �̈�𝑔. Other variables in Eq. (1) include 

the acceleration due to gravity (g) and the coefficient of static friction (𝜇𝑠). This paper’s sign convention indicates that 

horizontal displacement towards the right is positive and displacement towards the left is negative. The equation of motion for 

a sliding block is:  

�̈� = −�̈�𝑔 − 𝜇𝑘𝑠𝑖𝑔𝑛(�̇�)(𝑔 + �̈�𝑔) (2) 

Where �̈� and �̇� are the horizontal acceleration and velocity of the center of mass of the rigid bock, �̈�𝑔and �̈�𝑔are the vertical and 

horizontal ground accelerations, 𝜇𝑘 is the coefficient of kinetic friction, and g is the acceleration due to gravity.  

Rocking 

A pure rocking response begins when the following condition is met, given that there is sufficient friction present to prevent 

sliding. The criteria for initiation into the rocking mode is provided by the following equation: 

(𝑔 + �̈�𝑔) tan 𝛼 <  |�̈�𝑔| (3) 
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where �̈�𝑔and �̈�𝑔 are the horizontal and vertical ground acceleration, α is the critical angle of the rigid body (see Figure 1b), and 

g is the acceleration due to gravity. The equation of motion for a pure rocking response can be derived via Lagrangian dynamics 

resulting in the following:  

�̈� =
𝑚𝑅

𝑚𝑅2 + 𝐼
[−𝑠𝑖𝑔𝑛(𝜃)𝑔 sin(𝛼 − |𝜃|) − �̈�𝑔 cos(𝛼 − |𝜃|)] (4) 

In this equation, the rotational motion of the block is represented by �̈�, the angular acceleration, and θ, the rotational 

displacement. The constants m, R, and I are the mass of the block, rocking radius, and moment of inertia, respectively (see 

Figure 1b). Note, the signum function and the absolute value of theta included in the horizontal and vertical terms are to account 

for both positive and negative angular rotation.  

When a block is under pure rocking motion it pivots around one corner at a time then switches to the corresponding corner 

which causes an impact between the block and its foundation. This is modeled through a coefficient of restitution, or an 

instantaneous reduction of the angular velocity, �̇�: 

�̇�𝑛+1 = 𝑟�̇�𝑛 (5) 

where �̇�𝑛+1 is the angular velocity of the block immediately after the impact, �̇�𝑛 is the angular velocity of the block just before 

the impact, and r is the coefficient of restitution, which is determined through conservation of angular momentum:  

𝑟 = (1 −
3

2
sin2 𝛼)

2

(6) 

where α is the critical angle of the block.  

Slide-Rocking 

Slide-rocking is a response mode characterized by simultaneous uplift and slip. This mode can be initiated from rest or initiated 

from either a sliding or rocking response. To initiate sliding during rocking, the absolute value of the ratio of the horizontal and 

vertical reaction forces on the block that prevents sliding must be greater than the coefficient of static friction [11]. First, the 

acceleration of the mass of the block in the horizontal and vertical directions, with respect to a rocking response, are needed. 

Static equilibrium equations are used to solve for the reaction forces for the x- and y-directions, Rx and Ry, yielding: 

𝑅𝑦 = 𝑚(�̈�𝑔 + 𝑔) − 𝑠𝑖𝑔𝑛(𝜃)𝑚𝑅�̈� sin(𝛼 − |𝜃|) − 𝑚𝑅�̇�2 cos(𝛼 − |𝜃|) (7) 

𝑅𝑥 = 𝑚�̈�𝑔 − 𝑚𝑅�̈�𝑐𝑜𝑠(𝛼 − |𝜃|) + 𝑠𝑖𝑔𝑛(𝜃)𝑚𝑅�̇�2 sin(𝛼 − |𝜃|) (8) 

Where θ, θ̇, θ̈ are the angular displacement, velocity, and acceleration of the block, m is the mass, R is the rocking radius, α is 

the critical angle, �̈�𝑔 and �̈�𝑔 are the horizontal components of the ground acceleration, and g is the acceleration due to gravity.  

Slide-rocking will initiate from a rocking response if the ratio of the reaction forces is greater than the coefficient of static 

friction: 

|
𝑅𝑥

𝑅𝑦

| > 𝜇𝑠 (9) 

where μs is the coefficient of static friction. In addition, slide-rocking can initiate from a sliding mode, where the conditions 

needed to initiate this come from a variation of Eq. (3). An inertial term, 𝑚�̈�, is added to the inequality to account for the 

horizontal acceleration of the block during sliding [10]:  

𝑚(𝑔 + �̈�𝑔)𝑅 sin 𝛼 < 𝑚|�̈� + �̈�𝑔|𝑅 cos 𝛼 (10) 

The equations of motion for slide-rocking can be similarly derived in a Lagrangian formulation, which yields a pair of equations 

for both angular acceleration (�̈�) and horizontal acceleration (�̈�) of the center of mass:  

�̈� =
𝑚𝑅

𝑚𝑅2 + 𝐼
[− cos(𝛼 − |𝜃|) �̈� − 𝑠𝑖𝑔𝑛(𝜃)𝑔 sin(𝛼 − |𝜃|) − �̈�𝑔 cos(𝛼 − |𝜃|)] (11) 

�̈� = −𝑅[cos(𝛼 − |𝜃|) �̈� + 𝑠𝑖𝑔𝑛(𝜃) sin(𝛼 − |𝜃|) �̇�2] − �̈�𝑔 −
𝐹

𝑚
(12) 

where the variables are defined in accordance with Eq. (7) – Eq. (10) in addition to I, the moment of inertia and F, the work 

done by kinetic friction, which is defined as:  

𝐹 = 𝜇𝑘𝑠𝑖𝑔𝑛(�̇�)[𝑚(𝑔 + �̈�𝑔) − 𝑚𝑅�̇�2 cos(𝛼 − |𝜃|) +𝑚𝑅�̈� sin(𝛼 − |𝜃|)] (13) 
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where each variable is similarly previously defined in addition to the coefficient of kinetic friction, μk. In this equation, the 

direction of the block’s velocity, �̇�, determines the sign of the frictional force.  

Since slide-rocking is a combination of two modes, the unique principles of rocking and sliding both apply (i.e. restitution). 

For example, a body still experiences restitution and may overturn if the angle of rotation is sufficiently large. For a pure 

rocking mode, restitution only affects the magnitude of the angular velocity (see Eq. (5)), but for a slide-rocking case, the 

horizontal velocity must also be reduced after an impact [12]:  

�̇�𝑛+1 = 𝑟𝐻�̇�𝑛 (14) 

where �̇�𝑛+1 is the horizontal velocity of the block after impact, r is the coefficient of restitution (Eq. (6)), �̇�𝑛 is the angular 

velocity of the block before impact, and H is the height of the block. The equations of motion for slide-rocking, under specific 

conditions, simplify to pure sliding or rocking responses. In this case, if the all the θ terms in Eq. (12) are set equal to zero, the 

equation reduces to the sliding response from Eq. (2). Similarly, if all �̈� terms are set to zero in Eq. (11), it simplifies to Eq. (4), 

which is the equation of motion for pure rocking. Therefore, if the slide-rocking response is triggered, it is possible for the rigid 

body to transition to pure rocking or pure sliding without the need to switch integration to a different equation of motion.  

Representative Response due to Pulse Motion 

The equations derived above were integrated into a comprehensive MATLAB program, which requires five inputs: ground 

acceleration (�̈�𝑔 and �̈�𝑔), static and kinetic friction coefficients (𝜇𝑠 and 𝜇𝑘), as well as the base length (B) and height (H) of the 

rigid block. Eq. (1) and Eq. (3) determine the initial mode of response. Then, depending if sliding or rocking is triggered, the 

corresponding equations of motions are integrated to find the dynamic response of the block. The equations of motion are 

integrated using a 4th-5th order Runge Kutta time stepping scheme. At every time step, the inequalities in Eq. (9) and Eq. (10) 

are checked to determine if the equation of motion for integration needs to reflect the slide-rocking motion. In addition, the 

computed angular displacement time history is checked at each time step to identify if an impact event has occurred by detecting 

a sign change of the angular displacement. At these instances, restitution is applied using Eq. (5) and Eq. (6) for pure rocking 

cases and using Eq. (5), Eq. (6), and Eq. (14) for slide rocking cases. After restitution is applied, the integration continues using 

the updated values of angular and horizontal velocity. The integration is truncated if overturning is identified or the motion has 

sufficiently decayed after the end of the ground acceleration. Sample results of the developed program are included in Figure 

2 for pure sliding and pure rocking motions as well as in Figure 3 for a slide-rocking response. A sine wave pulse was used for 

the input ground motion with varying amplitudes and frequencies for blocks of varying geometry and friction to demonstrate 

each mode individually.  

EARTHQUAKE PULSE GENERATION 

Near-field ground motion pulses were generated as input for the intensity measure study using the analytical model from 

Mavroeidis and Papageorgiou [13]. Synthetic ground motions enable the study of how a rigid body, such as a PBR, would 

behave under a wide variety of earthquake magnitudes and rupture distances. The earthquake magnitudes ranged from 6.5 to 

8.5 with rupture distances of 5, 10 and 15 kilometers. For each magnitude-rupture distance pair, 250 pulses were generated for 

a combined total of 3750 pulses. The analytical equation for the near-field pulse motion in terms of velocity is: 

𝑣(𝑡) = 𝐴
1

2
[1 + cos (

2𝜋𝑓𝑝

𝛾
(𝑡 − 𝑡0))] cos[2𝜋𝑓𝑝(𝑡 − 𝑡0) + 𝜈] (15) 

The variable 𝑡0 represents a time shift calibration factor, as specified by Mavroeidis and Papageorgiou. For simplicity, the value 

given to 𝑡0 ensures that the pulse starts at time t = 0. The above formula requires additional inputs including pulse frequency 

(𝑓𝑝), number of half-cycles (γ), phase angle (ν), time shift (t0), and pulse amplitude (A), which are obtained through Latin 

Hypercube sampling using the statistics presented by Rupakhety et al. [14]. Rupakhety et al. assumed that the logarithms of 𝑓𝑝 

and the velocity amplitude of the pulse (𝑉𝑝) are normally distributed, and found the mean for each value using Eq. (16) and Eq. 

(17): 

log (
1

𝑓𝑝
) = −2.87 + 0.47𝑀𝑤 (16) 

log(𝑉𝑝) = −5.17 + 1.98𝑀𝑤 − 0.14𝑀𝑤
2 − 0.10 log(𝑅2 + 0.562) (17) 

where Mw is the moment magnitude and R is the distance of the near-fault earthquake pulse being considered. Note that these 

equations utilize a maximum moment magnitude of 7, and the amplitude of the velocity pulse is a function solely of the distance 

for larger magnitudes [14]. The standard deviations for the logarithms of pulse frequency and velocity amplitude are 0.18 and 

0.16, respectively. γ is assumed to follow a normal distribution with mean and standard deviation of 1.8 and 0.4 [14]. The phase 
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angle was selected arbitrarily from the range of π/2 to π/2 [15]. Once these parameters are found, the amplitude, A, can be 

calculated by rearranging the equation for pulse velocity by Mavroeidis and Papageorgiou: 

𝐴 = 2𝑉𝑝

[
 
 
 
 

1

(1 + cos (
2𝜋𝑓𝑝

𝛾
(𝑡 − 𝑡0)) ) cos[2𝜋𝑓𝑝(𝑡 − 𝑡0) + 𝜈]

]
 
 
 
 

(18) 

 

  
(a) (b) 

  

(c) (d) 

Figure 2. Pure sliding response of rigid block of R = 1.12 m, 𝜇𝑠 = 0.3, 𝑎𝑛𝑑 𝜇𝑘 = 0.2: (a) input base acceleration, and (b) 

displacement response. Pure rocking response of rigid block of R = 3.29 m, 𝜇𝑠 = 1.3, 𝑎𝑛𝑑 𝜇𝑘 = 1.2: (c) input base 

acceleration, and (d) angular displacement response. 

Figure 3. Slide-rocking response of rigid block of R = 2.06 m, 𝜇𝑠 = 0.3, 𝑎𝑛𝑑 𝜇𝑘 = 0.2: (a) input base acceleration, (b) 

displacement response, and (c) angular displacement response.   

INTENSITY MEASURE STUDY 

Earthquake intensity measures (IMs) are critical to relate seismic hazard to structural demand. In this case, the structural demand 

measures (DMs) used for precariously balanced rocks (PBRs) are the maximum absolute value horizontal and rotational 

displacements. When selecting IMs, it is important to consider efficiency and sufficiency. Efficiency of an IM refers to low 

variation in structural demand measures given an IM [16]. An IM is sufficient if it is independent of earthquake magnitude and 

 
(a) 

  
(b) (c) 
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rupture distance [17]. Most PBR studies have utilized the peak horizontal or ground acceleration (PHA or PGA) or the peak 

ground acceleration normalized by the peak ground velocity (PGA/PGV) [2, 8, 9, 17, 18]. However, a comprehensive study of 

the efficiency of these measures has not been conducted. Therefore, this paper examines additional IMs to identify a more 

robust relationship between an IM and the multi-modal dynamic response of a PBR. The other IMs include: sustained maximum 

acceleration, effective design acceleration, predominant period, the ratio of maximum velocity to maximum acceleration, 

significant duration, RMS acceleration, characteristic intensity, Arias intensity, cumulative absolute velocity (CAV), response 

spectrum intensity (SI), velocity spectrum intensity (VSI), acceleration spectrum intensity (ASI), and effective peak velocity 

[19]. For the spectral intensity quantities, eight different period ranges were examined. 

The IM study was conducted using a set of geometries targeting pure rocking and pure sliding subject to 3750 synthetic 

earthquake pulses. The pure sliding case used a block with a critical angle, α, of 45° and friction coefficients of 0.1 for both 

static and kinetic. Conversely, the critical angle of the rocking case block was much lower, α = 11.31° and the static and kinetic 

friction coefficients were 1.5 and 1.0, respectively. Next, a total of 37 ground motion IMs were calculated for each of the 3750 

motions. Results were excluded from the regression analysis if excessive angular or horizontal displacement was observed to 

focus the study on realistic structural responses. Then, a linear regression analysis was conducted between the ground motion 

IMs and the maximum absolute value structural demands of the block. The regression was done on the dataset as a whole and 

for a sample of five magnitude-distance (Mw-R) pairs. 

Sliding 

The IMs that demonstrated the most robust probabilistic relationship with horizontal displacement due to sliding were SI, ASI, 

and CAV. The R² values for the overall dataset and five magnitude-distances pairs are presented in Table 1. Statistical values 

for PHV and PHA are also listed since these metrics have historically been used as IMs for structures undergoing rocking 

behavior [9, 17, 18]. Spectral intensity quantities in the intermediate period range and CAV displayed the most significant R² 
for a pure sliding response whereas both PHV and PHA had the least significant. SI, ASI, and CAV were calculated using Eq. 

(19), (20), and (21) with a critical damping ratio of 5% [19]: 

 𝑆𝐼 = ∫ 𝑃𝑆𝑉(𝜁, 𝑇)𝑑𝑇
𝑇2

𝑇1

(19) 

 𝐴𝑆𝐼 = ∫ 𝑆𝑎(𝜁, 𝑇)𝑑𝑇
𝑇2

𝑇1

(20) 

 𝐶𝐴𝑉 = ∫ |𝑎(𝑡)|𝑑𝑡
𝑇𝑑

0

(21) 

where PSV is the pseudo-spectral velocity, ζ is the damping ratio, T is the period, T1 and T2 are the integration limits for period, 

Sa is the spectral acceleration, a(t) is the ground acceleration, t is time, and Td is the total duration of the ground acceleration 

time history. From Table 1, the relationship between the IM and DM vary noticeably between individual magnitude-distance 

pairs. For example, the earthquake pulses with magnitudes of 7 and 8 at a rupture distance of 10 km had the highest R² statistics. 

Magnitude 7 records exhibit the most significant R² values when PHV and PHA are excluded. CAV appears to be the most 

sufficient IM since it has the least variation in R² across the five magnitude-rupture distance pairs. The other parameter produced 

through the linear regression analyses was the slope of the regression line. The scatter plots for the five most significant IMs 

are shown in Figure 4. The blue markers represent pure sliding response while the orange markers indicate a record that 

produced no response from the block. The green line is the best-fit line for the data. Substantial scatter can be seen in the plots 

from Figure 4, indicating that the IMs are not very efficient and hinting that additional intensity measures may be required to 

adequately predict the sliding response.   

Rocking 

Similar to pure sliding, ASI and SI for intermediate period ranges had the highest correlation with rotational displacement due 

to rocking. The spectral intensity quantities demonstrated much more significant R² statistics than PHV and PHA with values 

of 0.5266 for ASI (1.0 – 2.5 s) compared to 0.1789 for PHV and 0.2403 for PHA, despite these two IMs being the most-used 

for rocking structures (Table 2). This trend can be seen in the overall dataset as well as in the individual magnitude-distance 

pairs. It is noted that the pulses with a magnitude of 8.5 and rupture distance of 10 km showed the highest R² among the top 

five IMs. This makes sense given that very intense motions are needed to initiate and sustain rocking motions. The variety of 

R² values between the magnitude-distance pairs may be indicative of insufficiency for ASI, SI, PHV, and PHA. In Figure 5 

below, the blue markers signify a pure rocking response, the orange markers show records that did not generate a rocking 

response, and the yellow marker depicts the overturning cases. Again, the green line is the best-fit line produced through linear 

regression analysis. These scatter plots show less variability in the maximum absolute value rotational displacement, which 
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indicates the efficiency of the IMs. While not directly presented in this paper, additional cases focused on slide-rocking response 

were analyzed as part of this study. Similar intensity measures emerged as optimal – namely, the spectral intensities over the 

intermediate range. The R2 statistics, in these cases, were on par with those reported for both sliding and rocking and even 

exceeded them for a number of slide-rocking blocks.  

 

Table 1. R2 values for IMs and sliding response for the overall dataset and individual magnitude-distance pairs. 

Intensity Measure R² Overall R² 

 M6.5 R10 M7 R10 M7.5 R10 M8 R10 M8.5 R10  
SI (2.5 to 3.0 s) 0.4096 0.6139 0.4995 0.5128 0.4610 0.4992 

ASI (2.5 to 3.0 s) 0.4070 0.6127 0.4955 0.5127 0.4581 0.4967 

CAV 0.4289 0.4872 0.4644 0.5675 0.4645 0.4712 

SI (2.0 to 2.5 s) 0.3573 0.5449 0.3663 0.5257 0.3773 0.4069 

ASI (2.0 to 2.5 s) 0.3557 0.5431 0.3626 0.5245 0.3743 0.4040 

PHV 0.1465 0.1109 0.1071 0.2839 0.1123 0.1461 

PHA 0.2370 0.1609 0.1910 0.2608 0.1721 0.1754 

 

     

 

Figure 4. Horizontal displacement due to sliding vs. intensity measures for all M-R pairs.  

 

Table 2. R2 values for IMs and rocking response for the overall dataset and individual magnitude-distance pairs. 

Intensity Measure R² value per Magnitude-Distance Pair Overall R² 

 M6.5 R10 M7 R10 M7.5 R10 M8 R10 M8.5 R10  

ASI (1.0 to 2.5 s) 0.6807 0.5515 0.4981 0.5860 0.7455 0.5266 

SI (1.0 to 2.5 s) 0.6794 0.5572 0.5030 0.5452 0.7738 0.5201 

SI (1.0 to 1.5 s) 0.6075 0.5317 0.4464 0.6855 0.5829 0.5104 

ASI (1.0 to 1.5 s) 0.6008 0.5308 0.4402 0.6918 0.5718 0.5080 

ASI (1.5 to 2.0 s) 0.6641 0.5246 0.4947 0.5447 0.7875 0.5031 

PHV 0.1688 0.1483 0.1156 0.4273 0.2121 0.1789 

PHA 0.3085 0.2559 0.2462 0.1766 0.2545 0.2403 

 

     

 
Figure 5. Rotational displacement due to rocking vs. intensity measures for all M-R pairs.  
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CONCLUSIONS 

The equations of motion for a two-dimensional rigid body subject to seismic excitations were presented for sliding, rocking 

and slide-rocking modes. Previous authors have mainly studied the rocking responses of precariously balanced rocks excluding 

sliding from their models, whereas this study included an analysis of sliding response. Several thousand synthetic earthquake 

pulses were produced and used as input to a set of two-dimensional freestanding structures in an intensity measure study for 

rocking, sliding, and slide-rocking cases. The data produced in this study suggests that traditional intensity measures (IMs) 

used for rocking blocks, like peak horizontal velocity or acceleration, are not the most sufficient or efficient IMs. IMs that 

measure spectral quantities in the intermediate period range showed stronger correlations with all modes, including sliding, 

rocking, and slide-rocking demands. However, significant scatter was observed for even the best performing IMs. Therefore, 

this study should be further expanded to include vector-valued IMs.  
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